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The application of multivariate statistics to  linear free-energy relationships in the thiophene series 
increases the understanding of the Hammett equation. Principal components analysis shows that a-  
substituted thiophenes require the 0 constants used for para-substituted benzene derivatives, owing to a 
strict proportionality of the substituent effects in the heterocyclic and homocyclic systems. Partial least- 
squares analysis indicates that two independent effects are linearly transferred from benzenes to 
t h i op henes. 

Although a complete understanding of substituent effects is still 
far from being achieved, the use of linear free-energy 
relationships for describing the systematic variation of 
properties within a series of compounds is of great value in 
physical organic chemistry. The great success of the Hammett 
equation is due to the possibility of deriving a mathematical 
model thus enabling both the prediction of properties of 
substrates not yet investigated and speculation on the reaction 
mechanism on the basis of the statistical results. 

However, the Hammett equation is a simple method of 
bivariate statistical analysis (simple linear regression) and 
applies to homogeneous series only. Moreover, it was derived 
for benzene derivatives and its use for modelling properties of 
compounds different from benzenes is not obvious. As part of 
our interest in the chemistry of heteroaromatic molecules we 
have pointed out the duality of the Hammett approach.’ 

In applying the Hammett equation to a series of 
monosubstituted benzenes the substituent parameters are kept 
constant, and the reaction parameters result from the statistical 
analysis. But, if one wishes to compare the substituent effects in 
the same reaction for two series of para-monosubstituted 
benzenes and a-monosubstituted thiophenes, the bivariate 
statistical method is not sufficient to solve the problem and an 
additional assumption must be made. 

Either one assumes that the substituent effect scale remains 
constant and therefore the same CT values can be used in both 
series, or one assumes that the reaction constant is indeed 
constant and fits the derivatives in both series to the same 
equation. 

In the former case the variation due to the change of the 
aromatic ring between the varying substituent and the reaction 
centre is reflected by the variation of the p values between the 
two series (sensitivity to substituent effects). However, the 
implicit assumption that the interaction between the substituent 
and the aromatic moiety remains constant is not supported on 
theoretical grounds. 

In the latter case, the assumption that the reaction constant 
should be the same under the same experimental conditions 
seems sounder, but this approach requires the definition of an 
individual IT constant for each moiety linked to the reaction 
centre (e.g. 5-methyl-2-thienyl), and no resulting statistical 
parameter can simply be related to the variation induced by the 
change of the aromatic ring. In previous work our group and 
many other authors3 preferred to keep the IT values constant, 
whereas other authors, who investigated side-chain reactivities 

in detail, used the second a p p r ~ a c h . ~  As pointed out by Wold 
and his co-workers in analysing the success of the Hammett 
equation in terms of the shell model, the two assumptions differ 
in what is considered to be the ‘inner’ shell.’ 

The application of recently developed computer packages of 
multivariate statistics such as SIMCA-MACUP 6*7 can solve 
this problem. The methods allow the comparison of matrices of 
data with each other. Thus we report here the results of the 
comparison between thiophenes and benzenes using a data set 
which includes the pK, values of carboxylic acids as well as 
electrophilic and side-chain reactivities taken from the relevant 
l i terat~re .~-~.*-~* 

The data set was chosen with the statistical requirements of 
the methods used in mind. In particular the number of 
substituents and reactions is as large as possible, provided that 
at least four measurements are available for each variable 
(reaction) and object (substituted aromatic compounds). A total 
of 15 reactions was used (see Table 1). Five of the series were 
measured under exactly the same experimental conditions. 

The data set so constructed was analysed in two ways, 
applying two different statistical methods. 

(A) A matrix was built in which each reaction was taken as a 
variable (1 5 reactions) and each substrate was considered as an 
independent object (1 2 compounds). This matrix was analysed 
by the SIMCA method, based on the philosophy of fitting 
disjointed principal components models to each separate class 
of objects. 

(B) A matrix was built considering six substituents (objects) 
only, common to both series, for a number of variables (nine 
reactions for benzenes: X-block; eight reactions for thiophenes: 
Y-block). Where a reaction centre is already present in the 
molecules, substitution refers to the para-position in benzenes 
and to the second a-position in thiophenes. The matrix was 
analysed by the PLS2 method, a partial least-squares analysis 
where the latent variables r and u are extracted as components 
from each block X and Y, respectively, while simultaneously a 
linear relationship between the latent variables t and u of the 
same dimensionality is optimised. 

Principal Components Analysis (PCA).-The SIMCA method 
is described in detail in refs. 6 and 7. Therefore only a brief 
summary is given here. The data matrix X contains elements 
x(ki) (reactivity or equilibrium data) where index iis used for the 
reactions (variables) and k is used for the substrates (objects). 

The statistical parameters Z(i), b(ia), and r(ak) in equation (1) 
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Table 2. Objects parameters (scores: t )  and distances from the model 
[s(k)]  for the PCA of the A matrix. The reference standard deviation 
s(0) is 0.24 

Substituent (k) 
Methoxy 
Methyl 
Hydrogen 
Chlorine 
Bromine 
Nitro 
Methoxy 
Methyl 
Hydrogen 
Chlorine 
Bromine 
Nitro 

[Ring1 
Benzene 
Benzene 
Benzene 
Benzene 
Benzene 
Benzene 
Thiophene 
Thiophene 
Thiophene 
Thiophene 
Thiophene 
Thiophene 

[ ( I )  r(2) 

- 1.99 0.84 
- 0.96 1.35 
- 0.06 1.14 

0.01 1.24 
2.77 1.52 

-3.11 -0.07 

-1.22 -1.06 
-0.59 -1.35 

0.07 - 1.24 
1.14 -1.03 
1.09 -0.74 
4.53 0.35 

4k) 
0.27 
0.10 
0.13 
0.08 
0.08 
0.14 
0.25 
0.23 
0.25 
0.05 
0.16 
0.08 

Figure 1. Principal components plot for the A matrix. The circles 
represent benzenes and the squares represent thiophenes 

.u(ki) = Z(i) + C a b(iu) t(ak) + e(ki) (1) 

are estimated by minimizing the squared residuals e(ki), 
together with the number of significant cross-terms A, by means 
of the NIPALS algorithm. The data are first autoscaled in order 
to give all variables the same initial importance. The analysis 
then proceeds by model expansions. Initially a model with A = 
0 is fitted to the data, which means that each variable is given as 
its mean value. Then these averages are subtracted from the 
matrix elements x(ki) thus giving residuals of dimension zero. If 
these residuals contain systematic information (according to 
cross-validation as in ref. 21) the b(il)t( lk) term is estimated. 
Then new residuals are calculated by subtracting this term from 
each element. If the new residuals (dimension one) still contain 
systematic information, additional b(i)t(k) terms are then 
estimated one after the other until the residuals just contain 
noise. 

The analysis permits an illustration of the data structure to be 
obtained. Plots of one component against another can be 
considered as windows on the data set showing inhomogeneities, 
if present. The plot of the first against the second component, 
containing most of the information, usually gives the best idea 
on the presence of subgroupings. 

The SIMCA analysis of the A matrix shows that two 
components only are significant according to the cross- 
validation procedure on autoscaled data, reweighted in order to 
give the same initial importance to each block of reactions 
proceeding by the same mechanism. Consequently, the 
mathematical model is represented by a plane in the 15- 
dimensional space. The projection of each object on the model 
is illustrated in Figure 1, and the resulting statistical parameters 
are listed in Tables 2 (objects parameters: scores) and 3 
(variables parameters : weights, averages, loadings, and modell- 
ing powers). The data do contain structure as almost 85% of the 
total variance is explained by the two-component model. 

Figure 1 clearly indicates that the objects (substrates) cluster 
into two groups: benzenes and thiophenes. Therefore the 
multivariate approach positively states that the change in the 
aromatic system is far more dramatic than the change in 
substituents, otherwise we should have found in the plot pairs of 
equally substituted compounds. Interestingly, the first dimen- 
sion t ( l ) ,  which contains most of the information (48%), 
separates the substituents according to their known electronic 
effect from electron-donors to electron-withdrawers. However, 

Table 3. Variables parameters (weights, averages, loadings, and 
modeling powers) for the PCA of the A matrix. 

Reaction w(i) ave b(1) b(2) MPOW 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0.087 
0.237 
0.1 16 
0.125 
0.232 
0.130 
0.124 
0.101 
1.290 
0.21 5 
0.855 
0.243 
0.722 
0.575 
2.028 

0.31 1 
0.039 
0.094 
0.206 
0.122 
0.152 

-0.212 
0.196 

-0.153 
0.336 

0.858 
- 0.373 

- 0.488 
- 0.08 1 

0.993 

- 0.032 
- 0.292 
-0.129 
- 0.305 
- 0.27 1 
-0.128 
- 0.088 
-0.124 

0.227 

0.1 17 
0.053 

-0.525 

- 0.248 
- 0.262 

0.438 

-0.277 
-0.121 
- 0.206 
-0.013 
-0.111 
- 0.207 
- 0.236 
-0.213 

0.359 
0.099 
0.439 

0.073 
- 0.446 

- 0.206 
- 0.363 

0.54 
0.3 1 
0.65 
0.38 
0.08 
0.65 
0.67 
0.63 
0.66 
0.4 1 
0.69 
0.42 
0.76 
0.8 1 
0.87 

the span covered by substituted thiophenes is larger than that of 
substituted benzenes. 

Accordingly, there is no simple linear relationship capable of 
modelling benzenes and thiophenes at the same time. Therefore 
this result shows that it is incorrect to use a unique parameter 
(such as the reaction constant) for the whole set. 

The SIMCA method also permits an evaluation of the 
statistical significance of the groupings by computing the 
interclass distance.6 This is accomplished by fitting the objects 
of each class (B and T) to its own model and to the model of the 
other class, and evaluating the standard deviations obtained. 
The resulting distance of 3.4 confirms that monosubstituted 
benzenes and thiophenes are indeed well separated groups, since 
the value is significant on the p = 0.01 level of the F- 
distribution. 

Partial Least-squares Analysis (PLS).-PCA is not aimed at 
finding out the relationships existing between one or more 
‘dependent’ variables and a group of explanatory variables. In 
chemistry this is usually dealt with by multiple regression 
analysis (MRA) techniques.’ However, MRA assumes that all 
the ‘descriptor’ variables are independent of each other, error- 
free, and 100% relevant to the problem. The partial least-squares 
(PLS) method 22  was recently developed to handle these 
problems in an alternative way, where the relevance of each 
independent variable results from the statistical analysis. 

When the problem under investigation does not involve a 
single dependent variable, there are in fact two blocks of 
variables, and it becomes possible to define a dependent matrix 
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Table 4. Model expansions results for the independent PC analyses of 
the benzene and thiophene blocks of the B matrix. The figures indicate 
the fraction of variance explained by the model after including each A 
dimension 

% V(B) % V(T) 
A = l  97 93 
A = 2  99 97 

c5 .- v 

3 

Table 5. Scores from the PLS analysis: the t parameters are the latent 
variables for the X block and the u parameters are the latent variables of 
the Y block 

Substituent [(I) 41) t(2) 42) 
Methoxy 2.52 2.36 0.35 0.59 
Methyl 1.32 2.40 -0.16 -0.18 
Hydrogen 0.33 0.39 - 0.34 - 0.43 
Chlorine -0.35 - 0.39 - 0.0 1 - 0.20 
Bromine - 0.49 - 0.46 - 0.0 1 -0.17 
Nitro - 3.33 - 3.30 0.17 0.38 

~~ 

Table 6. Weights, averages, and loadings from the PLS analysis 

Reaction up( i) 
X block (benzenes) 

1 0.105 
2 0.108 
3 0.120 
4 0.093 
5 1.915 
6 1.459 
7 0.975 
8 0.530 
9 2.658 

Y block (thiophenes) 
10 0.143 
11 0.125 
12 0.146 
13 0.198 
14 0.3 15 
15 1.208 
16 0.837 
17 2.757 

ave 

0.030 
- 0.078 
- 0.024 

0.0 14 

0.080 
-0.297 
-0.140 

0.346 

-0.013 

- 0.046 
0.048 
0.008 

0.058 
-0.179 

- 0.922 
-0.732 

2.176 

4 1 )  

0.250 
0.252 
0.252 
0.250 

- 0.499 
- 0.287 

0.284 
0.29 1 

-0.501 

0.256 
0.253 
0.255 
0.236 
0.500 

0.361 
-0.338 

- 0.505 

b(2) 

0.228 
0.068 
0.083 
0.237 

0.079 
- 0.499 
-0.101 

0.507 

-0.599 

- 0.034 
0.216 

- 0.004 
-0.344 

0.564 
0.608 

0.363 
-0.116 

Yand an ‘independent’ matrix X.’ The question is whether or not 
the members of the Y matrix can be described as a function of 
the members of the Xmatrix. 

In general, this problem is handled by computing principal 
components models for each of the two matrices, followed by 
establishment of a linear relationship between the principal 
components of these two blocks, respectively. Instead of this 
two-step procedure, it is now possible to make a single analysis 
in which the two steps are achieved simultaneously. 

This method is called PLS2, and current experience shows 
that it is computationally much faster than PCA followed by 
MRA, and that it leads to a better prediction of the members of 
the Y matrix. The PLS2 method gives a description of the X 
matrix by one principal component-like model [equation (l)], a 
description of the Y matrix by an analogous model [equation 
(Z)], and predictive relations between the latent variables t and u 
[equation (3)], where d(a) is a proportionality coefficient for each 
dimension. 

u(ak) = d(a) c(ak) + h(ak) (3) 

0 OMe 

0 Me 

O H  

Br 03 CI 

0 NO2 

Figure 2. Plot of the first latent variable of the thiophene block against 
the first latent variable of the benzene block 

The algorithm used in this MACUP method, presented in 
detail elsewhere,’ is iterative for each dimension as in PCA. It 
consists of finding the latent variables of the Xmatrix flak) from 
starting values of u(ak) and the X elements, and then 
recomputing the latent variables of the Y matrix u(ak) from the 
Y elements and the t(ak) values, until the process converges. The 
meaning of b and c is the same as in PCA and can therefore be 
used in the same way in e.g. classification. 

The B matrix is therefore formed by a block of y variables 
(eight thiophene reactions) and a block of x reactions (nine 
benzene reactions) for the same objects (the six substituents 
available). 

It is possible to: (a) detect, by PCA, the structure of each 
block; (b) find out, by PLS2, how well the elements of the Y 
block can be predicted from the elements of the X block, or, in 
other words, how much of the systematic variation of the X 
block can be transferred to the Y block, and how many 
independent effects this relationship involves; (c) estimate, by 
comparing the two methods, whether the thiophene block has 
any systematic variation that cannot be explained in terms of 
the corresponding benzenes, spotting out peculiar intrinsic 
behaviour of thiophenes, if any. 

The independent PCA of the two blocks shows that in both 
cases a two-component model describes almost completely the 
data structures. The numerical results for the model expansions 
are reported in Table 4. 

The partial least-squares analysis (PLS2) is aimed at finding 
out the inner relationship between the latent variables (principal 
components) of each block under the constraint of maximizing 
the correlation between them. The results, obtained after 
pretreatment of missing data on the basis of the whole principal 
components model, are reported in Tables 5 and 6. 

Again two components are significant according to cross- 
validation. The first component explains almost 93% of the 
total variance of the Y block, while the second one explains a 
further 4%, up to 97%. The results are illustrated in Figures 2 
and 3. 

Figure 2 shows the relationship between the first component 
(latent variable) of the benzene block, t( l), against the first 
component (latent variable) of the thiophene block, u( 1). The 
points lie on a straight line, thus indicating that a large degree 
(93%) of simple linear relationship exists between the two sets of 
data. 

To a first approximation, since the order of the substituents 
along the latent variable plot is the usual one from electron- 
withdrawers to electron-donors, this large degree of pro- 
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0 Not 

O M e  0 Br 
0 CI 

0 OMe 

Figure 3. Plot of the second latent variable of the thiophene block 
against the second latent variable of the benzene block 

portionality can be ascribed to the ‘intrinsic’ electronic effect 
typical of each substituent. 

However, the second latent variable is also significant, 
indicating that a second effect, independent of the first, is also 
transferable from the benzene to the thiophene block. This 
orthogonal effect is much less important as it is responsible for a 
much smaller fraction of variance. The high value (1.5) of the 
coefficient of the inner relationship, d(2), indicates that this 
effect is much more important in thiophenes than in benzenes. 

The order (Figure 3) in which the substituents line up along 
the straight line (methoxy, nitro, methyl, and hydrogen, with 
halogens behaving in a somewhat peculiar way) might be 
tentatively ascribed to an interaction of the substituents with 
the aromatic ring, enhanced in the thiophene series because of 
the presence of sulphur. 

Since the fit of both the PCA and PLS models goes up to 97% 
these two effects apparently explain completely the data 
structure. Therefore the thiophene block does not exhibit any 
peculiar behaviour of its own. 

The present result must also take into account our previous 
findings on the nature of substituent effects, showing the 
existence of well separated subgroups such as alkyls, halogens, 
acceptors, and  donor^.^^.^^ We have stated that this discrete 
nature of substituents forces any mathematical model to 
describe almost exclusively the intergroup structure.24 

Consequently, the relationship between thiophenes and 
benzenes might just be due to the presence of subgroupings. It is 
possible, however, to test how much of the variance of the Y 
matrix explained by PLS should be related to the intergroup 
variance, by replacing the X matrix with an appropriate 
simulation of groups. Thus an Xmatrix with three variables was 
constructued. For donors all three variables were zero, for 
alkyls and hydrogen (100), for halogens (OlO), and for acceptors 
(001). The PLS calculation with this matrix shows that the first 
latent variable explains 60% of the total variance, and the 
second a further 27%. This should be compared with 97% on 
using the benzene X matrix. 

Accordingly, most of the structure of the data set should be 
ascribed to the variation between groups, but it is possible to 
observe that the large degree of proportionality found between 
thiophenes and benzenes also includes a significant contribution 
of the intergroup variance. In other words, this ‘unique’ effect 
pointed out by the first latent variable indicates that the 
relationship between thiophenes and benzenes involves mainly 
the relative effects of each group of substituents, but also some 

degree of systematic behaviour of substituents within each 
group. 

Conclusions.-The combination of the results obtained by 
PCA and PLS clearly points out a number of features. (1) The 
variation of the aromatic ring is the most important structural 
change between the two series, even within the same reactions. 
Accordingly a unique reaction constant for all the substrates is 
not warranted. 

(2) There is an approximate linear relationship between the 
major substituent effects in the two series. This explains why the 
application of separate Hammett models to substituted 
benzenes and thiophenes using the same G values works fairly 
well. The variation of the p values from benzenes to thiophenes 
for the same reaction is indeed due to the different, but 
proportional, effect of the substituents on the ring, as previously 
suggested. 

(3) The data analysis shows that a single model can 
adequately describe substituent effects in both benzene and 
thiophene series, i.e. the reactivities of thiophenes can be 
predicted from those of benzenes. 

(4) The model indicates that two independent effects are 
linearly transferred from benzenes to thiophenes. Tentatively, 
the predominant effect can be ascribed to the ‘intrinsic’ 
electronic characteristics of substituents, which are transmitted 
proportionally to the reaction centre, whereas the second effect, 
perhaps due to a different interaction between the substituents 
and the aromatic moiety, is much smaller. 

(5) The fact that two significant dimensions (according to 
cross-validation) explain 97% of the variance, both in the PCA 
of the two separate benzene and thiophene matrices and in the 
PLS of their reaction, shows that the data are unusually precise 
and that the conclusions drawn are statistically highly 
significant. 
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